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Abstract
Corner transfer matrices are a useful tool in the statistical mechanics of simple
two-dimensional models. They can be a very effective way of obtaining series
expansions of unsolved models, and of calculating the order parameters of
solved ones. Here we review these features and discuss the reason why the
method fails to give the order parameter of the chiral Potts model.
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Mathematics Subject Classification: 82B20, 82B23

1. Introduction

In an early work of the author [1], he evaluated numerically a sequence of approximations
for the free energy (or entropy) of the monomer–dimer system on the square lattice, using
a variational approximation for the eigenvalues and eigenvectors of the row-to-row transfer
matrix. His interest was to see if the model exhibited a phase transition as the density of
dimers increased from zero to the close packed value of one-half. No such transition was
observed: the model is critical only at close packing, where it can be solved exactly [20]. This
was reflected in the poorer convergence of the approximations as close packing is approached.

The result may have been negative, but the work did lead naturally to the development of
the useful concept of ‘corner transfer matrices’.

These matrices build up the lattice by rotations about the centre. For an infinite lattice
they are of infinite dimension, but for the zero-field Ising model, one can write them in terms
of the spinor operators (or Clifford algebra) introduced by Kaufman [21] and diagonalize them
exactly [2, 25]. The results were surprisingly simple, and provided a reasonably direct way of
obtaining the spontaneous magnetization (the order parameter) of the Ising model, compared
with the previous verifications of the Onsager–Kaufman result [23] by Yang [26], Montroll,
Potts and Ward [22] and others.

It was also realized that the corner transfer matrices satisfy certain equations. Again, to
give exact results the matrices and equations must be infinite dimensional, but a finite truncation
corresponds to a variational approximation of the type used for the monomer–dimer system.
Such truncations can give useful approximations to the exact results, even for models which
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have not been solved exactly. For instance, Baxter and Enting [12] were able to obtain 24
terms in the low-temperature series expansion of the Ising model in a field, using only 15
by 15 matrices. This was a great improvement on the 12-term series expansions previously
obtained [24].

Here we present these equations for a quite general ‘edge-interaction’ model, where spins
live on sites of the square lattice and the interactions are between adjacent spins. We discuss
the simplifications that arise for a ‘solvable’ model, i.e. one whose Boltzmann weights satisfy
the star-triangle relation. We emphasize the importance of the ‘rapidity-difference’ property
and indicate how it ensures that the corner transfer matrices commute and have a very simple
eigenvalue spectrum. This makes it easy to obtain the order parameters of such models.

Finally we discuss the chiral Potts model, and indicate how the lack of a rapidity difference
property for that model prevents its solution by the same corner transfer matrix techniques.

For definiteness, here we consider only ZN -invariant models (such as the Ising, self-
dual Potts and chiral Potts models), where each spin can take N values and the Boltzmann
weights depend only on the difference (modulo N) of the spin values. The extension to more
general edge-interaction models (perhaps including site weight functions as in the solvable
Kashiwara–Miwa model [15, 17, 19]) is straightforward.

2. Square lattice edge-interaction models

In figure 1 we have drawn the square lattice L diagonally, denoting sites by circles and edges
by solid lines. On each site i there is a ‘spin’ σi , taking some discrete set of N values, say
0, 1, . . . , N − 1. Spins on adjacent sites i and j , with j above and to the right of i, interact
with the Boltzmann weight function W(σi − σj ), as indicated. Similarly, spins on sites k and
l, with l above and to the left of k, interact with the weight function W(σk − σl). The partition
function is

Z =
∑

σ

∏
i,j

W(σi − σj )
∏
k,l

W(σk − σl), (2.1)

the sum being over all values of all the spins on the lattice, the first product over all SW–NE
edges, the second over all SE–NW edges.

If the lattice has L sites, we expect the limit

κ = lim
L→∞

Z1/L (2.2)

to exist, and to be independent of the manner in which L becomes large, so long as it becomes
infinite in all directions.

In figure 1 we have singled out a central site with spin a. The average of any function
f (a) is defined as

〈f (a)〉 = Z−1
∑

σ

f (a)
∏
i,j

W(σi − σj )
∏
k,l

W(σk − σl). (2.3)

We also expect any such average to tend to a limit, provided we impose suitable conditions
on the values of the boundary spins, and take a limit where a becomes infinitely far from any
boundary.

2.1. Corner transfer matrices

Here we define the corner transfer matrices (and the associated row and column matrices) for
a general anisotropic edge-interaction model.
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Figure 1. The square lattice (solid lines, drawn diagonally), showing a central spin a and the
(dotted) rapidity lines.

Figure 2. The parts of the lattice corresponding to the various matrices A, B, F, G.

We have again drawn the diagonal square lattice in figure 2 and have singled out a central
edge linking two sites with spins a and b. We have then used dotted lines to divide the lattice
into nine parts: the central edge, four ‘corners’ labelled respectively Aa

1, B2, A
b
3, B4, and four

columns or rows Fa
1 ,Gb

2, F
b
3 ,Ga

4.
Take all the spins on the outermost boundary of the lattice to have some fixed value1, say

zero. Let λ be the set of spins on the dotted line to the left of the spin a and µ the set of spins
on the dotted line below a. Consider all the edges of the lattice below λ and to the left of µ, i.e.
all the edges in the lower-left corner of the lattice. Take the product over all such edges of the
appropriate weight functions W or W , and sum over all the spins internal to that corner. The
resulting partition function of the corner will be a function of a, λ and µ. Write it as

(
Aa

1

)
λ,µ

.

1 For an ordered system, the boundary spins should be set to values consistent with the ground state of the particular
phase under consideration.



12580 R J Baxter

Figure 3. The partition functions ZA,Z2. We have omitted the edges of L, but their positions can
be deduced from the full circle denoting the lattice spin a.

Similarly, let
(
Fa

1

)
µ,ν

be the product of the weight functions of the edges between µ and
ν. Let (B2)ν,τ be the partition function of the lower-right corner of the lattice, i.e. the portion
to the right of µ and below τ and so on. Then the partition function of the complete lattice is
Z = ZW , where

ZW =
∑

W(a − b)
(
Aa

1

)
λ,µ

(
Fa

1

)
µ,ν

(B2)ν,τ . . .
(
Ga

4

)
ρ,λ

, (2.4)

the sum being over all values of a, b and all the spins on the dotted lines of figure 2.
Plainly we can regard

(
Aa

1

)
λ,µ

as the element (λ, µ) of a matrix Aa
1,

(
Fa

1

)
µ,ν

as the element
(µ, ν) of a matrix Fa

1 , etc. Then (2.4) simplifies to

ZW =
∑
a,b

W(a − b) Trace Aa
1F

a
1 B2G

b
2A

b
3F

b
3 B4G

a
4, (2.5)

the sum now being only over the spins a, b.
There are other ways of building up Z using the matrices Ai, Bi, Fi,Gi as building blocks,

most of them being simpler than (2.5). They are

ZW =
∑
a,b

W(a − b) Trace B1G
a
1A

a
2F

a
2 B3G

b
3A

b
4F

b
4 ,

ZA =
∑

a

Trace Aa
1A

a
2A

a
3A

a
4, ZB = Trace B1B2B3B4,

Zi =
∑

a

Trace Aa
i F

a
i Bi+1Bi+2G

a
i+2A

a
i+3,

where i = 1, . . . , 4 and the suffixes containing i are to be interpreted modulo 4. We have
indicated how ZA and Z2 are constructed in figure 3.

Note that Fa
i always follows Aa

i and precedes Bi+1, while Ga
i follows Bi and precedes

Aa
i+1.

If we keep the sizes of the blocks corresponding to the Ai, Bi, Fi,Gi matrices fixed (and
mutually consistent), then ZA,ZB correspond to the smallest lattices, ZW,ZW to the largest,
and Z1, . . . Z4 to intermediate ones. Using (2.2), we find that in the limit of the lattices
becoming large, the partition function per site is

κ = ZAZBZWZW

Z1Z2Z3Z4
. (2.6)

We shall find it convenient to define four Boltzmann weight functions U1, . . . , U4 by

U1(n) = W(n), U2(n) = W(n),

U3(n) = W(−n), U4(n) = W(−n)
(2.7)

and to set

Z̃1 = Z̃3 = ZW, Z̃2 = Z̃4 = ZW. (2.8)
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Figure 4. Graphical representation of the elements (ρ, ρ′) of the two sides of equation (2.9a) for
i = 3.

Equations [3, 4] for the corner transfer matrices can be obtained by requiring that the
expression (2.6) be stationary with respect to variations in the matrices Ai, Bi, Fi,Gi . This
variational principle leads to the four equations∑

b

Ui(a − b)Gb
i+1A

b
i+2F

b
i+2Bi+3G

a
i+3 = ηiBi+2G

a
i+2A

a
i+3, (2.9a)

∑
b

Ui−1(a − b)F a
i−1BiG

b
i A

b
i+1F

b
i+1 = η′

iA
a
i F

a
i Bi+1, (2.9b)

Fa
i Bi+1Bi+2G

a
i+2 = ξiA

a
i+1A

a
i+2, (2.9c)∑

b

Gb
i−2A

b
i−1A

b
i F

b
i = ξ ′

iBi−1Bi. (2.9d)

Our notation is now such that rotating the lattice through 90◦ is equivalent to incrementing
i by 1 in all suffixes.

Pre-multiplying both sides of (2.9a) by Aa
i F

a
i Bi+1 and summing over a, we find that

ηi = Z̃i/Zi. (2.10)

Similarly,

η′
i = Z̃i+1/Zi, ξi = Zi/ZA, ξ ′

i = Zi/ZB (2.11)

and, for instance,

κ = ηiη
′
i+2/(ξi+1ξ

′
i+3). (2.12)

Equations (2.9a)–(2.9d) can be represented graphically, each side being a semi-lattice,
e.g. for i = 3 equation (2.9a) can be represented as in figure 4.

We can only expect these equations to be exact (for an infinite system) when the matrices
are infinitely dimensional. However, if we take them to finite-dimensional, then the fact
that (2.9a)–(2.9d) are derived from the variational principle for κ ensures that these equations
are mutually consistent and that they will define the Ai, Bi, Fi,Gi (to within irrelevant
similarity transformations). There will be many solutions—a test of the utility of any particular
solution is that it should reproduce as many of the largest eigenvalues of Aa

1A
a
2A

a
3A

a
4 and

B1B2B3B4 as possible for that truncation.
Such truncations can provide a powerful tool for performing numerical or series expansion

calculations on otherwise unsolved models [9]. Indeed, it was such a calculation that led to
the exact solution of the hard hexagon model [5, 14].

3. Solvable models

We now focus our attention on models that are known to be solvable and satisfy the star-
triangle relation. Their corner transfer matrix have special simplifying properties. These



12582 R J Baxter

properties are true only in the infinite-dimensional limit, but for any given truncation they will
be approximately true, in particular they will hold to appropriate orders in a low-temperature
series expansion.

In general, if a model satisfies the star-triangle relation, then its weights W(n),W(n)

depend on two variables p and q, called ‘rapidities’. The variable p is associated with the
vertical direction of the lattice L, q with the horizontal direction. We display this dependence
by writing the weights as Wpq(n),Wpq(n). The star-triangle relation relates three sets of
Boltzmann weights, with rapidities (p, q), (p, r), (q, r). It is∑

d

Wqr(b − d)Wpr(a − d)Wpq(d − c) = RpqrWpq(a − b)W(b − c)Wqr(a − c), (3.1)

for all p, q, r and values of the three external spins a, b, c. The sum is over all values of the
internal spin d.

A second relation must also hold, where all the spin-difference arguments in (3.1) are
negated, so that b − d becomes d − b, a − b becomes b − a, etc. Provided we impose cyclic
boundary conditions, (3.1) ensures that the row-to-row transfer matrices of two models, one
with rapidities (p, q), the other with (p, r), commute [4]. Thus it is natural to allow q, r to
vary from row to row of the lattice L, and in figure 1 we have used this freedom to associate
two rapidities q, q ′ with the horizontal rows of the lattice. Moreover, this is true even if the
rapidities on the dotted vertical lines of figure 1 are different, e.g., if the lines to the left of a
have rapidity p, while those to the right have rapidity p′, as shown.

More generally, we can allow a different rapidities p for each of the dotted vertical lines in
figure 1, and a different rapidity q for each horizontal line. The Boltzmann weight of any edge
of L is Wpq(n) or Wpq(n), where the p and q are the rapidities of the dotted lines intersecting
that edge.

It follows that the eigenvectors of these transfer matrices are independent of horizontal
rapidities such as the q, q ′ shown in figure 1. The correlations of spins lying within a single
row of L will therefore also be independent of q, q ′.

But (to within an overall irrelevant normalization factor) the expressions represented by
figure 4 are precisely such correlations, involving only the spin sets ρ, ρ ′ and the spin a on the
upper edge of each side. This implies that(

B1G
a
1A

a
2

)
ρ,ρ ′ = independent of q, q ′. (3.2)

There is a problem with this argument: we are using fixed-spin boundary conditions, not
cyclic ones. However, provided the conditions are commensurate with the ground state of
the system, we expect (3.2) to be true in the limit when the lattice is large and only a finite
number of the spins in ρ, ρ ′ differ from the ground-state values. This is how we construct the
infinite-dimensional matrices, so we believe (3.2) to be true in this limit.

For i odd, it follows that the matrices

Aa
i A

a
i+1, BiBi+1, Aa

i F
a
i Bi+1, BiG

a
i A

a
i+1 (3.3)

are independent of horizontal rapidities such as q, q ′. Similarly, for i even, they are independent
of vertical rapidities such as p, p′.

Each matrix will depend only on the rapidities p, q of that particular, corner, row or
column. For instance, B1 will depend only on the rapidities of the lower-left corner. For each
matrix we take all the p’s to be that same, and all the q’s, and write the matrix as a function of
p, q, e.g.

B1 = B1(p, q).

For i odd, each of the expressions (3.3) is a product of matrices corresponding to blocks
of L that occupy the same rows of L. The horizontal rapidity q must therefore be the same
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for each matrix within the expression, but the vertical p rapidities may be different. Thus, for
instance, the above argument gives

B1(p, q)B2(p
′, q) = independent of q

for all p, p′, q. Fixing p′ and assuming the Bi matrices to be invertible, it follows that there
exist invertible matrices R(p), S(q) such that

B1(p, q) = R(p)S(q).

This is a factorization property. All the corner matrices Aa
i , Bi similarly factor and we

find that

Aa
i (p, q) = [

Xa
i−1(p̃i)

]−1Aa
i X

a
i(q̃i),

Bi(p, q) = [Yi−1(p̃i)]
−1BiYi(q̃i),

F a
i (p, q) = [

Xa
i (q̃i)

]−1Fa
i (p̃i)Yi(q̃i),

Ga
i (p, q) = [Yi(q̃i)]

−1Ga
i (p̃i)X

a
i(q̃i),

(3.4)

where p̃i = p, q̃i = q if i is odd; and p̃i+1 = q̃i , q̃i+1 = p̃i for all i. Note that the matrices
Aa

i ,Bi are independent of p and q, while Fa
i ,Ga

i depend only on the single rapidity p̃i .
The choice of the Xi, Yi is not unique: each can be pre-multiplied by different constant

invertible matrices Ci,Di and the Ai ,Bi ,Fi ,Gi then adjusted accordingly so as to ensure
that (3.4) remains satisfied. However, this does not change the eigenvalues of

Ma = Aa
1Aa

2Aa
3Aa

4, N = A1A2A3A4.

These matrices define ZA and ZB and play an important role in the calculations: for instance,
the order parameters are

〈ωja〉 =
∑

a

ωja Trace Ma

/∑
a

Trace Ma (3.5)

where ω = e2iπ/N and j = 1, . . . , N − 1.
Substituting these forms into equations (2.9a)–(2.9d), all the Xi, Yi matrices cancel out,

so the effect is to replace the matrices Ai, Bi, Fi,Gi byAi ,Bi ,Fi ,Gi , whereAi ,Bi are rapidity
independent and Fi ,Gi depend only on the single rapidity p̃i .

3.1. Properties and symmetries

There are various properties and symmetries that relate the corner transfer matrices. For the
Ising, self-dual Potts and chiral Potts models [13], it is true that

Wpp(n) = 1, Wpp(n) = δn,0 (3.6)

and there exist rotation and reflection transformations p → Rp,p → Sp, such that

Wpq(n) = Wq,Rp(n), Wpq(n) = Wq,Rp(−n), (3.7)

Wpq(n) = WSq,Sp(n), Wpq(n) = WSq,Sp(−n). (3.8)

If we write Ui(n) more explicitly as Ui(p, q|n), it follows that Ui(q, Rp|n) =
Ui+1(p, q|n) and

Aa
i (p, p) = Bi(p, p) = 1 for i = 1 and 3, (3.9)

Aa
i (q, Rp) = Aa

i+1(p, q), . . . ,Ga
i (q, Rp) = Ga

i+1(p, q), (3.10)
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and, for instance,

Bi(Sq, Sp) = B6−i (p, q)T . (3.11)

Replacing p, q by q,Rp is simply equivalent to rotating the lattice through 90◦, i.e.
incrementing the suffixes i by one.

These equations impose many restrictions of the matrices Xi, Yi,Ai ,Bi ,Fi ,Gi . We shall
not explore all of them here, but note that they do imply that there exists a matrix function
Xa(p) such that we can choose

Xa
1 (p) = Xa

4(p) = Xa(p), Xa
2(p) = Xa

3(p) = (
Aa

2

)−1
Xa(p),

Aa
1 = Aa

3 = 1
(3.12)

Aa
1(p, q) = [Xa(p)]−1Xa(q), Aa

2(p, q) = [Xa(q)]−1Xa(Rp),

Aa
3(p, q) = [Xa(Rp)]−1Xa(Rq), Aa

4(p, q) = [Xa(Rq)]−1Xa(R2p),
(3.13)

where

Xa(R2p) = MaXa(p). (3.14)

Corresponding equations hold for the matrices Yi,Bi , Bi,Ni , with no superfixes a.

4. Ising model

We have seen how the star-triangle relation implies that row-to-row transfer matrices commute
and corner transfer matrices factor. To proceed further we need an important property, namely
that for many models we can choose the rapidity variables p, q so that

Wpq(n),Wpq(n) = functions only of q − p and n. (4.1)

We call this the rapidity difference property. It is intimately connected with the fact that
for such models the Boltzmann weights live on algebraic curves of genus 0 or 1, so can be
naturally be parametrized in terms of Jacobi elliptic functions. One had become so used to
this property that it was taken for granted. It was the discovery of the chiral Potts model [13],
which does not have this property, that made its importance obvious.

The Ising model is a two-state model (i.e. N = 2) of the type discussed above. Taking
Wpq(0) = Wpq(0) = 1, its other Boltzmann weights are [8]

Wpq(1) = e−2J = k′ scd(K − u), (4.2)

Wpq(1) = e−2J = k′ scd(u), (4.3)

where

u = uq − up, (4.4)

and the function scd(u) is defined by

scd(u) = sn(u/2)/[cn(u/2) dn(u/2)],

sn u, cn u, dn u being the Jacobi elliptic functions of argument u and modulus k.
Then, setting k′ = (1 − k2)1/2, we have

sinh 2J = sn u

cn u
, sinh 2J = cn u

k′sn u
(4.5)
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and sinh 2J sinh 2J = 1/k′. The conjugate modulus k′ is small at low temperatures, increasing
to one at criticality. Within this range the model has ferromagnetic order. The Boltzmann
weights satisfy (3.7) if we define

uRp = up + K, (4.6)

they are real and positive provided u = uq − up is real and

0 < uq − up < K, (4.7)

K,K ′ being the usual complete elliptic integrals. Note that this restriction remains satisfied if
we replace p, q by Rq, p, when uq − up becomes K − uq + up.

The relation (4.4) manifests the difference property. It has far-ranging consequences, in
fact it enables us to calculate the spontaneous magnetization, i.e. the order parameter (3.5)
with j = 1 [4, chapter 13].

To see this, note that we write the first equation (3.13) as

Aa
1(uq − up) = [X(up)a]−1X(uq)

a. (4.8)

Replacing p, q by q, r and multiplying, this gives

Aa
1(uq − up)Aa

1(ur − uq) = Aa
1(ur − up)

i.e.

Aa
1(u)Aa

1(v) = Aa
1(u + v), (4.9)

for arbitrary u, v. Interchanging u, v, it follows that

Aa
1(u)Aa

1(v) = Aa
1(v)Aa

1(u), (4.10)

so Aa
1(u), Aa

1(v) commute, for all u, v.
There is therefore a similarity transformation, independent of u, that diagonalizes Aa

1(u).
Let us assume this transformation has been applied and take Aa

1(u) to be diagonal. Then it
follows from (4.9) that each diagonal element of Aa

1(u) is an exponential function of u, i.e.[
Aa

1(u)
]
i,i

= exp(−niu), (4.11)

where ni is some number.
Allow u = uq − up to be an arbitrary complex number. Since

scd(u + 2iK ′) = −scd(u),

it follows from (4.2) that incrementing u by 2iK ′ merely negates Wpq(1) and Wpq(1). From
series expansions, we expect Aa

1(u), and indeed all the functions we have defined in the
thermodynamic limit of a large lattice, to be an analytic function of u within the extended
physical domain 0 < �(u) < K , which implies

Aa
1(u + 2iK ′) = (−1)aAa

1(u). (4.12)

It follows that

ni = πmi/(2K ′), (4.13)

where mi is an even integer for a = 0, an odd integer for a = 1.
If we take the low-temperature limit k′ → 0, keeping u in the vicinity of K/2, then to

leading order in q ′ = e−πK/K ′
,

Wpq(1) = e−πu/(2K ′), Wpq(1) = eπ(u−K)/(2K ′). (4.14)

We find that Aa
1(u), as originally defined before (2.4), is already diagonal to leading order.

Let the spins to the left of and including a in figure 2 be . . . , λ2, λ1, a, where λ1 is next to
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a, λ2 is next to λ1, etc. Then the corresponding diagonal element of Aa
1(u) is indeed of the

form (4.11), (4.13), the index i being replaced by the spin set λ, i.e.

Aa
1(u)λ,λ = exp{−πumλ/(2K ′)}, (4.15)

where

mλ = |a − λ1| + 3|λ1 − λ2| + 5|λ2 − λ3| + · · · . (4.16)

We have obtained this result in the low-temperature limit k′ → 1. However, for all k′ the mλ

must be integers and we do not expect them to change discontinuously as k′ increases to unity.
Hence we expect the formulae (4.15), (4.16) for the diagonal elements of Aa

1(u) to be exact
for 0 < k′ < 1.

Set u1 = u2 = uq − up and u2 = u4 = K − uq + up. Then from (3.10),

Aa
i (p, q) = Aa

1(ui), (4.17)

so these matrices, together with the product

Ma = Aa
1(p, q)Aa

2(p, q)Aa
3(p, q)Aa

4(p, q) (4.18)

are diagonalized by the same transformation that diagonalizes Aa
1(u), and

Ma
λ,λ = xmλ, (4.19)

where x = q ′ = e−πK/K ′
.

These are also the elements of the diagonalized matrix Ma: we see that our calculation
is consistent with the independence of Ma on the rapidity variables p, q.

It is now straightforward to calculate the spontaneous magnetization from (3.5). First set
λ0 = a and

li = |λi − λi+1|, i � 0, (4.20)

so li = 0 if λi = λi+1, otherwise li = 1. Take λi = 0 for sufficiently large i, then to modulo 2,

a = λ0 + λ1 + λ2 + · · · ,
and

mλ = λ0 + 3λ1 + 5λ2 + · · · .
From (3.5) and (4.19),

〈(−1)a〉 =
∑

l

(−1)axmλ

/∑
l

xmλ . (4.21)

Here a,mλ are the linear expressions immediately above and the sums are over
l0, l1, l2, . . . = 0, 1, without restriction. Each sum therefore factors into a product of individual
sums over l0, l1, l2, . . . , giving

〈(−1)a〉 = (1 − x)(1 − x3)(1 − x5) · · ·
(1 + x)(1 + x3)(1 + x5) · · · . (4.22)

Using known elliptic function formulae [16, 8.197.4], and [4, 15.1.4b] the RHS is k1/4, so

〈(−1)a〉 = k1/4 = (1 − k′2)1/8 (4.23)

which is the famous result announced by Onsager in 1949 [23] and derived by Yang in
1952 [26].
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5. Summary

We have explicitly shown how the star-triangle relation implies that the corner transfer matrices
factor, causing the reduced matrix functionsAa

i ,Bi ,Fa
i ,Ga

i to depend on at most one of the two
rapidity variables. The rotation (and reflection) relations enable one to express the matrices,
for i = 1, . . . , 4, in terms of the single i = 1 case.

Curiously, this by itself does not seem enough to enable one to calculate quantities
such as the order parameters: if one also has the rapidity difference property (4.1), then the
corner transfer matrices commute and can be simultaneously reduced to diagonal form. The
eigenvalues are necessarily exponentials in u = uq − up and are periodic of period 2iK ′:
this means they are defined by certain integers mλ, and these integers can be obtained from a
low-temperature limit. The order parameters follow immediately.

It still seems strange that the method should fail for a model such as the chiral Potts model,
which does satisfy the star-triangle relation, so in that sense is ‘solvable’. As yet the method
has only yielded finite series expansions [6, 7].

The order parameters have now been obtained by a specialization of the Jimbo, Miwa,
Nakayashiki method [10, 11, 18], but it would be interesting to rescue the corner transfer
matrix technique for this model. For the models with the difference property, diagonalizing
the matrices leads directly to the Jacobi elliptic parametrization. For the chiral Potts model, is
there any way of expressing the matrices that leads to an analogous parametrization?
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